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Hierarchical Clustering

A potential disadvantage of K-means clustering is that it

requires us to pre-specify the number of clusters K.

® Hierarchical clustering is an alternative approach that does
not require us to do that.

® Hierarchical clustering results in a tree-based representation of

the observations, called a dendrogram.

® \We focus on bottom-up or agglomerative clustering, which is

the most common type of hierarchical clustering.
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Interpreting a Dendrogram

® We have (simulated) data consisting of 45 observations in
two-dimensional space.

® The data were generated from a three-class model.

® However, suppose that the data were observed without the

class labels and we want to perform hierarchical clustering.

(Source: James et al. 2013, 391)



Interpreting a Dendrogram

Results obtained from hierarchical clustering (with complete linkage)

(Source: James et al. 2013, 392)




Interpreting a Dendrogram

® Each leaf of the dendrogram represents an observation.

® As we move up the tree, leaves fuse into branches and

branches into other branches.

® QObservations that fuse at the bottom of the tree are similar to
each other, whereas observations that fuse close to the top
are different.

® \We compare the similarity of two observations based on the
location on the vertical axis where the branches containing the

observations are first fused.

® We cannot compare the similarity of two observations based
on their proximity along the horizontal axis.



Interpreting a Dendrogram

® How do we identify clusters on the basis of a dendrogram?

® To do this, we make a horizontal cut across the dendrogram
(see center and right panels above).

® The sets of observations beneath the cut can be interpreted as
clusters.

® One single dendrogram can be used to obtain any number of
clusters.

® The height of the cut to the dendrogram serves the same role
as the K in K-means clustering: it controls the number of
clusters obtained.



Hierarchical Clustering vs. K-Means Clustering

® Hierarchical clustering is called hierarchical because clusters
obtained by a cut at a given height are nested within clusters
obtained by cuts at any greater height.

® However, this assumption of hierarchical structure might be
unrealistic for a given data set.

® Suppose that we have a group of people with a 50-50 split of
males and females, evenly split among three countries of

origin.



Hierarchical Clustering vs. K-Means Clustering

® Suppose further that the best division into two groups splits
these people by gender, and the best division into three
groups splits them by country.

® |n this case, the clusters are not nested.

® Hierarchical clustering might yield worse (less accurate)
results than K-means clustering.
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The Hierarchical Clustering Algorithm

® The hierarchical clustering dendrogram is obtained via the
following algorithm.

e We first define a dissimilarity measure between each pair of
observations (most often, Euclidean distance is used).

® Starting at the bottom of the dendrogram, each of the n
observations is treated as its own cluster.

® The two clusters that are most similar to each other are then
fused so that there are now n — 1 clusters.

® Next the two clusters that are most similar to each other are
fused again, leaving us with n — 2 clusters.

® The algorithm proceeds until all observations belong to one

single cluster.



The Hierarchical Clustering Algorithm — Example

Hierarchical clustering dendrogram and initial data
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(Source: James et al. 2013, 393)



The Hierarchical Clustering Algorithm — Example

First few steps of the hierarchical clustering algorithm
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The Hierarchical Clustering Algorithm

® |n the figure above, how did we determine that the cluster
{5, 7} should be fused with the cluster {8}7

® \We have a concept of the dissimilarity between pairs of
observations, but how do we define the dissimilarity between
two clusters if they contain multiple observations?

® We need to extend the concept of dissimilarity between a pair
of observations to a pair of groups of observations.

® The linkage defines the dissimilarity between two groups of

observations.
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The Hierarchical Clustering Algorithm

Summary of the four most common types of linkage

Linkage

Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid

Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

(Source: James et al. 2013, 395)
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Choice of Dissimilarity Measure

® So far, we have used Euclidean distance as the dissimilarity

measure.
® Sometimes other dissimilarity measures might be preferred.

® An alternative is correlation-based distance which considers
two observations to be similar if their features are highly
correlated.

® (Correlation-based distance focuses on the shapes of

observation profiles rather than their magnitudes.
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Choice of Dissimilarity Measure

Three observations with measurements on 20 variables
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Practical Issues in Clustering

In order to perform clustering, some decisions must be made.

® Should the observations or features first be standardized?

® |n the case of hierarchical clustering:
® What dissimilarity measure should be used?

® What type of linkage should be used?
® Where should we cut the dendrogram in order to obtain

clusters?
® |n the case of K-means clustering, how many clusters should

we look for in the data?
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