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Clustering

• Clustering refers to a set of techniques for finding subgroups,
or clusters, in a data set.
• The goal is to partition the observations of a data set into
distinct groups so that the observations within each group are
similar to each other, while the observations in different
groups are different from each other.
• This is an unsupervised problem because we are trying to
discover structure (distinct clusters) on the basis of a data set.
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Clustering Versus PCA

• Both clustering and PCA seek to simplify data via a small
number of summaries.
• However, their mechanisms are different:

• PCA tries to find a low-dimensional representation of the
observations that explains a large fraction of the variance;

• Clustering tries to find homogeneous subgroups among the
observations.
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K-Means Clustering and Hierarchical Clustering

• There are many clustering methods; K-means clustering and
hierarchical clustering are the two best-known approaches.
• In K-means clustering, we seek to partition the observations
into a pre-specified number of clusters.
• In hierarchical clustering, we do not know in advance how
many clusters we want.
• We can cluster observations on the basis of the features in
order to identify subgroups among the observations; or we can
cluster features on the basis of the observations in order to
discover subgroups among the features.
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K-Means Clustering

• K-means clustering partitions a data set into K distinct,
non-overlapping clusters.
• We must first specify the desired number of clusters K.
• The K-means algorithm then assigns each observation to
exactly one of the K clusters.
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K-Means Clustering – Example

Simulated data set with 150 observations in two-dimensional space10.3 Clustering Methods 387

K=2 K=3 K=4

FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (10.9)

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.

Solving (10.9) seems like a reasonable idea, but in order to make it
actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2, (10.10)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (10.9) and (10.10) gives the optimization problem that defines
K-means clustering,

minimize
C1,...,CK

⎧
⎨
⎩

K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2

⎫
⎬
⎭ . (10.11)

(The colors of the observations are the output of the clustering algorithm: they indicate the cluster to which each
observation was assigned by K-means clustering. Source: James et al. 2013, 387)
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Details of K-Means Clustering

• Let C1, . . . , CK denote sets containing the indices of the
observations in each cluster.
• These sets satisfy two properties:

1 C1 ∪ C2 ∪ . . . ∪ CK = {1, . . . , n}. In other words, each
observation belongs to at least one of the K clusters.

2 Ck ∩ Ck′ = ∅ for all k 6= k′. In other words, no observation
belongs to more than one cluster.

• The goal is to find a good clustering, i.e., one for which the
within-cluster variation is as small as possible.
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Details of K-Means Clustering

• The within-cluster variation W (Ck) is a measure of the
amount by which the observations within cluster Ck differ
from each other.
• We want to partition the observations into K clusters such
that the sum of the within-cluster variation is as small as
possible:

arg min
C1,...,CK

{
K∑

k=1
W (Ck)

}
. (3.3.1)

• To solve (3.3.1), we need to define the within-cluster variation
W (Ck).
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Details of K-Means Clustering

• The most common definition of W (Ck) is

W (Ck) = 1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2, (3.3.2)

where |Ck| is the number of observations in cluster Ck.
• Combining (3.3.1) and (3.3.2) gives the optimization problem
in K-means clustering:

arg min
C1,...,CK


K∑

k=1

1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2

 . (3.3.3)
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Details of K-Means Clustering

• Solving (3.3.3) is a very difficult problem, since there are
many(!) ways to partition n observations into K clusters
(unless K and n are small).
• However, the following algorithm can be shown to provide a
local optimum to the K-means optimization problem.
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Algorithm for K-Means Clustering

Algorithm: K-Means Clustering

1 Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for the
observations.

2 Iterate until the cluster assignments stop changing:
(a) For each of the K clusters, compute the cluster centroid. The

kth cluster centroid is the vector of the p feature means for
the observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance, i.e., the
“straight-line” distance between two points).
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Algorithm for K-Means Clustering

K-means algorithm run on the simulated data set with 150 observations
(K = 3)

10.3 Clustering Methods 389

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 10.6. The progress of the K-means algorithm on the example of Fig-
ure 10.5 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

initial configurations. Then one selects the best solution, i.e. that for which
the objective (10.11) is smallest. Figure 10.7 shows the local optima ob-
tained by running K-means clustering six times using six different initial
cluster assignments, using the toy data from Figure 10.5. In this case, the
best clustering is the one with an objective value of 235.8.

As we have seen, to perform K-means clustering, we must decide how
many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 10.3.3.

(Source: James et al. 2013, 389) 11



Algorithm for K-Means Clustering

• Because the K-means algorithm finds a local rather than a
global optimum, the results obtained will depend on the initial
random cluster assignments in Step 1 of the algorithm.
• Therefore, it is important to run the algorithm multiple times
with different random initial values.
• Then one selects the best solution, i.e., that for which the
objective (3.3.3) is smallest.
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Algorithm for K-Means Clustering

Local optima obtained by running K-means clustering six times using
different initial cluster assignments390 10. Unsupervised Learning

320.9 235.8 235.8

235.8 235.8 310.9

FIGURE 10.7. K-means clustering performed six times on the data from Fig-
ure 10.5 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (10.11). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

10.3.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.

In this section, we describe bottom-up or agglomerative clustering.
bottom-up

agglomerative
This is the most common type of hierarchical clustering, and refers to
the fact that a dendrogram (generally depicted as an upside-down tree; see

(Above each plot is the value of the objective (3.3.3). Source: James
et al. 2013, 390) 13
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