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Clustering

e (Clustering refers to a set of techniques for finding subgroups,
or clusters, in a data set.

® The goal is to partition the observations of a data set into
distinct groups so that the observations within each group are
similar to each other, while the observations in different
groups are different from each other.

® This is an unsupervised problem because we are trying to
discover structure (distinct clusters) on the basis of a data set.



Clustering Versus PCA

® Both clustering and PCA seek to simplify data via a small
number of summaries.
® However, their mechanisms are different:
® PCA tries to find a low-dimensional representation of the

observations that explains a large fraction of the variance;
® (Clustering tries to find homogeneous subgroups among the

observations.



K-Means Clustering and Hierarchical Clustering

® There are many clustering methods; K-means clustering and
hierarchical clustering are the two best-known approaches.

® |n K-means clustering, we seek to partition the observations
into a pre-specified number of clusters.

® In hierarchical clustering, we do not know in advance how

many clusters we want.

® \We can cluster observations on the basis of the features in
order to identify subgroups among the observations; or we can
cluster features on the basis of the observations in order to

discover subgroups among the features.



Clustering

K-Means Clustering



K-Means Clustering

® K -means clustering partitions a data set into K distinct,
non-overlapping clusters.

® \We must first specify the desired number of clusters K.

® The K-means algorithm then assigns each observation to
exactly one of the K clusters.



K-Means Clustering — Example

Simulated data set with 150 observations in two-dimensional space
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(The colors of the observations are the output of the clustering algorithm: they indicate the cluster to which each

observation was assigned by K-means clustering. Source: James et al. 2013, 387)



Details of K-Means Clustering

® |et C,...,Ck denote sets containing the indices of the
observations in each cluster.
® These sets satisfy two properties:

®CiUCU...UCk ={1,...,n}. In other words, each
observation belongs to at least one of the K clusters.

® C.NCy =0 forall kK # K. In other words, no observation
belongs to more than one cluster.
® The goal is to find a good clustering, i.e., one for which the

within-cluster variation is as small as possible.



Details of K-Means Clustering

® The within-cluster variation W (C}) is a measure of the
amount by which the observations within cluster C, differ
from each other.

® \We want to partition the observations into K clusters such
that the sum of the within-cluster variation is as small as
possible:

K
arg min {Z W(Ck)} . (3.3.1)
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® To solve (3.3.1), we need to define the within-cluster variation
W (Ch).



Details of K-Means Clustering

® The most common definition of W (CYy) is

w(C Z me zy;)%,  (33.2)
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where |Cy| is the number of observations in cluster Cj.

® Combining (3.3.1) and (3.3.2) gives the optimization problem
in K-means clustering:

argmln{z| oA Z Za:” %32}- (3.3.3)
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Details of K-Means Clustering

® Solving (3.3.3) is a very difficult problem, since there are
many(!) ways to partition n observations into K clusters
(unless K and n are small).

® However, the following algorithm can be shown to provide a
local optimum to the K-means optimization problem.
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Algorithm for K-Means Clustering

Algorithm: K-Means Clustering

@ Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for the

observations.
@ lterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for
the observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance, i.e., the

“straight-line” distance between two points).

10



Algorithm for K-Means Clustering
K-means algorithm run on the simulated data set with 150 observations

Iteration 1, Step 2a
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(Source: James et al. 2013, 389)



Algorithm for K-Means Clustering

® Because the K-means algorithm finds a local rather than a
global optimum, the results obtained will depend on the initial
random cluster assignments in Step 1 of the algorithm.

® Therefore, it is important to run the algorithm multiple times
with different random initial values.

® Then one selects the best solution, i.e., that for which the

objective (3.3.3) is smallest.
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Algorithm for K-Means Clustering

Local optima obtained by running K-means clustering six times using
different initial cluster assignments
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(Above each plot is the value of the objective (3.3.3). Source: James
et al. 2013, 390) 13
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