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Principal Components Analysis



Principal Components Analysis

• Suppose that we wish to visualize n observations with
measurements on a set of p features, X1, X2, . . . , Xp, as part
of an exploratory data analysis.
• How can we achieve this goal?
• We could examine two-dimensional scatterplots of the data,
each of which containing two features (Xj , Xk) ∈ X, j 6= k.
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Principal Components Analysis

• However, there would be
(p

2
)

= p(p− 1)/2 such scatterplots
(e.g., with p = 10 there would be 45 scatterplots).
• Moreover, these scatterplots would not be informative since
each would contain only a small fraction of the total
information present in the data set.
• Clearly, a better method is required to visualize the n
observations when p is large.
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Principal Components Analysis

• Our goal is to find a low-dimensional representation of the
data that captures as much of the information as possible.
(E.g., if we can find a two-dimensional representation of the data that

captures most of the information, then we can plot the observations in

this two-dimensional space.)

• PCA is a method that allows us to do just this.
• It finds a low-dimensional representation of a data set that
contains as much as possible of the variation in the data.
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Principal Components Analysis

The idea behind PCA is the following:

• Each of the n observations lives in a p-dimensional space.
• However, not all of these p dimensions are equally interesting.
• PCA seeks a small number of dimensions that are as
interesting as possible.
• “Interesting” is determined by the amount that the
observations vary along a dimension.
• The dimensions, or principal components, that PCA
determines are linear combinations of the p features.
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How Are the Principal Components
Determined?



How Are the Principal Components Determined?

• The first principal component of features X1, X2, . . . , Xp is
the normalized linear combination

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp (3.2.1)

that has the largest variance.
• By normalized, we mean that

∑p
j=1 φ

2
j1 = 1.

• The elements φ11, . . . , φp1 are called the loadings of the first
principal component. Together, they make up the principal
component loading vector, φ1 = (φ11 φ21 . . . φp1)T .
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How Are the Principal Components Determined?

• Why do we constrain the loadings so that their sum of squares
is equal to 1?
• Without this constraint, the loadings could be arbitrarily large
in absolute value, resulting in an arbitrarily large variance.
• Given an n× p data set X, how do we compute the first

principal component?
• As we are only interested in variance, we center each variable
in X to have mean 0.
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How Are the Principal Components Determined?

• We then look for the linear combination of the feature values
of the form

zi1 = φ11xi1 + φ21xi2 + . . .+ φp1xip (3.2.2)

that has the largest sample variance, subject to the constraint
that

∑p
j=1 φ

2
j1 = 1.

• Hence, the first principal component loading vector solves the
optimization problem

arg max
φ11,...,φp1

 1
n

n∑
i=1

 p∑
j=1

φj1xij

2
 s.t.

p∑
j=1

φ2
j1 = 1. (3.2.3)
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How Are the Principal Components Determined?

• Problem (3.2.3) can be solved via an eigen decomposition (for
details, see Hastie et al. 2009, 534ff.).
• The z11, . . . , zn1 are called the scores of the first principal

component.
• After the first principal component Z1 of the features has been
determined, we can find the second principal component Z2.
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How Are the Principal Components Determined?

• The second principal component is the linear combination of
X1, . . . , Xp that has maximal variance out of all linear
combinations that are uncorrelated with Z1.
• The second principal component scores z12, z22, . . . , zn2 take

the form
zi2 = φ12xi1 + φ22xi2 + . . .+ φp2xip, (3.2.4)

where φ2 is the second principal component loading vector,
with elements φ12, φ22, . . . , φp2.
• It turns out that constraining Z2 to be uncorrelated with Z1 is
equivalent to constraining the direction φ2 to be orthogonal to
the direction φ1.

9



PCA – Example (USA Arrests Data)

• For each of the 50 US states, the data set contains the
number of arrests per 100,000 residents for each of three
crimes: Assault, Murder, and Rape.
• We also have for each state the population living in urban
areas: UrbanPop.
• The principal component score vectors have length n = 50,

and the principal component loading vectors have length
p = 4.
• PCA was performed after standardizing each variable to have
mean 0 and standard deviation 1.
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Example: USA Arrests Data

Biplot (displays principal component scores and loading vectors for the
first two principal components)

378 10. Unsupervised Learning
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FIGURE 10.1. The first two principal components for the USArrests data. The
blue state names represent the scores for the first two principal components. The
orange arrows indicate the first two principal component loading vectors (with
axes on the top and right). For example, the loading for Rape on the first com-
ponent is 0.54 , and its loading on the second principal component 0.17 (the word
Rape is centered at the point (0.54 , 0.17)). This figure is known as a biplot, be-
cause it displays both the principal component scores and the principal component
loadings.

UrbanPop. Hence this component roughly corresponds to a measure of overall
rates of serious crimes. The second loading vector places most of its weight
on UrbanPop and much less weight on the other three features. Hence, this
component roughly corresponds to the level of urbanization of the state.
Overall, we see that the crime-related variables (Murder, Assault, and Rape)
are located close to each other, and that the UrbanPop variable is far from
the other three. This indicates that the crime-related variables are corre-
lated with each other—states with high murder rates tend to have high
assault and rape rates—and that the UrbanPop variable is less correlated
with the other three.

(Source: James et al. 2013, 378) 11



Example: USA Arrests Data

• In the figure, the blue state names represent the scores for the
first two principal components (axes on the bottom and left).
• The orange arrows indicate the first two principal component
loading vectors (axes on the top and right).
• For example, the loading for Rape on the first component is

0.54, and its loading on the second component 0.17 (the word
Rape in the plot is centered at the point (0.54, 0.17)).
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Example: USA Arrests Data

• The first loading vector places approximately equal weight on
the crime-related variables, with much less weight on
UrbanPop (see axis on the top).
→ Hence, this component roughly corresponds to a measure
of overall crime rates.

• The second loading vector places most of its weight on
UrbanPop and much less weight on the other three features
(see axis on the right).
→ Hence, this component roughly corresponds to the level of
urbanization of a state.
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Principal Components Analysis

Interpretation of Principal Components



Interpretation of Principal Components

Interpretation I: Principal component loading vectors are the
directions in feature space along which the data vary the most.

Two-dimensional data set: population size (in 10,000) and ad spending
for a company (in $1,000)230 6. Linear Model Selection and Regularization
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FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates the first principal
component, and the blue dashed line indicates the second principal component.

where

βj =

M∑

m=1

θmφjm. (6.18)

Hence (6.17) can be thought of as a special case of the original linear
regression model given by (6.1). Dimension reduction serves to constrain
the estimated βj coefficients, since now they must take the form (6.18).
This constraint on the form of the coefficients has the potential to bias the
coefficient estimates. However, in situations where p is large relative to n,
selecting a value of M ≪ p can significantly reduce the variance of the fitted
coefficients. If M = p, and all the Zm are linearly independent, then (6.18)
poses no constraints. In this case, no dimension reduction occurs, and so
fitting (6.17) is equivalent to performing least squares on the original p
predictors.

All dimension reduction methods work in two steps. First, the trans-
formed predictors Z1, Z2, . . . , ZM are obtained. Second, the model is fit
using these M predictors. However, the choice of Z1, Z2, . . . , ZM , or equiv-
alently, the selection of the φjm’s, can be achieved in different ways. In this
chapter, we will consider two approaches for this task: principal components
and partial least squares.

6.3.1 Principal Components Regression

Principal components analysis (PCA) is a popular approach for deriving
principal
components
analysis

a low-dimensional set of features from a large set of variables. PCA is
discussed in greater detail as a tool for unsupervised learning in Chapter 10.
Here we describe its use as a dimension reduction technique for regression.

(Source: James et al. 2013, 230)
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Interpretation of Principal Components

Interpretation II: The first M principal component loading
vectors span the M -dimensional hyperplane that is closest to the n
observations.

Simulated three-dimensional data set380 10. Unsupervised Learning
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FIGURE 10.2. Ninety observations simulated in three dimensions. Left: the
first two principal component directions span the plane that best fits the data. It
minimizes the sum of squared distances from each point to the plane. Right: the
first two principal component score vectors give the coordinates of the projection
of the 90 observations onto the plane. The variance in the plane is maximized.

xij ≈
M∑

m=1

zimφjm (10.5)

(assuming the original data matrix X is column-centered). In other words,
together the M principal component score vectors and M principal com-
ponent loading vectors can give a good approximation to the data when
M is sufficiently large. When M = min(n − 1, p), then the representation

is exact: xij =
∑M

m=1 zimφjm.

10.2.3 More on PCA

Scaling the Variables

We have already mentioned that before PCA is performed, the variables
should be centered to have mean zero. Furthermore, the results obtained
when we perform PCA will also depend on whether the variables have been
individually scaled (each multiplied by a different constant). This is in
contrast to some other supervised and unsupervised learning techniques,
such as linear regression, in which scaling the variables has no effect. (In
linear regression, multiplying a variable by a factor of c will simply lead to
multiplication of the corresponding coefficient estimate by a factor of 1/c,
and thus will have no substantive effect on the model obtained.)

For instance, Figure 10.1 was obtained after scaling each of the variables
to have standard deviation one. This is reproduced in the left-hand plot in
Figure 10.3. Why does it matter that we scaled the variables? In these data,

(Left: the first two principal component directions span the plane that best fits the data. Right: Projection of
the observations onto the plane; the variance on the plane is maximized. Source: James et al. 2013, 380) 15
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Scaling the Variables



Scaling the Variables

• The results obtained by PCA depend on the scales of the
variables.
• In the US Arrests data, the variables are measured in different
units: Murder, Rape, and Assault are occurrences per
100,000 people and UrbanPop is the percentage of a state’s
population that lives in an urban area.
• These variables have variance 18.97, 87.73, 6945.16, and

209.5, respectively.
• If we perform PCA on the unscaled variables, then the first
principal component loading vector will have a very large
loading for Assault.
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Scaling the Variables

US Arrests data10.2 Principal Components Analysis 381
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FIGURE 10.3. Two principal component biplots for the USArrests data. Left:
the same as Figure 10.1, with the variables scaled to have unit standard deviations.
Right: principal components using unscaled data. Assault has by far the largest
loading on the first principal component because it has the highest variance among
the four variables. In general, scaling the variables to have standard deviation one
is recommended.

the variables are measured in different units; Murder, Rape, and Assault are
reported as the number of occurrences per 100, 000 people, and UrbanPop

is the percentage of the state’s population that lives in an urban area.
These four variables have variance 18.97, 87.73, 6945.16, and 209.5, respec-
tively. Consequently, if we perform PCA on the unscaled variables, then
the first principal component loading vector will have a very large loading
for Assault, since that variable has by far the highest variance. The right-
hand plot in Figure 10.3 displays the first two principal components for the
USArrests data set, without scaling the variables to have standard devia-
tion one. As predicted, the first principal component loading vector places
almost all of its weight on Assault, while the second principal component
loading vector places almost all of its weight on UrpanPop. Comparing this
to the left-hand plot, we see that scaling does indeed have a substantial
effect on the results obtained.

However, this result is simply a consequence of the scales on which the
variables were measured. For instance, if Assault were measured in units
of the number of occurrences per 100 people (rather than number of oc-
currences per 100, 000 people), then this would amount to dividing all of
the elements of that variable by 1, 000. Then the variance of the variable
would be tiny, and so the first principal component loading vector would
have a very small value for that variable. Because it is undesirable for the
principal components obtained to depend on an arbitrary choice of scaling,
we typically scale each variable to have standard deviation one before we
perform PCA.

(Source: James et al. 2013, 381)
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Scaling the Variables

• Suppose that Assault were measured in occurrences per 100
people rather than per 100,000 people.
• In this case, the variance of the variable would be tiny, and so
the first principal component loading vector would have a very
small value for that variable.
• We typically scale each variable to have a standard deviation
of 1 before we perform PCA, so that the principal components
do not depend on the choice of scaling.
• However, if the variables are measured in the same units, we
might choose not to scale the variables.
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Uniqueness of the Principal Components



Uniqueness of the Principal Components

• Each principal component loading vector is unique, up to a
sign flip.
• The reason is that a principal component loading vector
specifies a direction in p-dimensional space. Flipping the sign
has no effect as the direction does not change.
• Similarly, the score vectors are unique up to a sign flip, since
the variance of Z is the same as the variance of −Z.

19
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The Proportion of Variance Explained



The Proportion of Variance Explained

• Above, we performed PCA on a simulated three-dimensional
data set (left panel) and projected the data onto the first two
principal component loading vectors (right panel).
• In this case, the two-dimensional representation of the
three-dimensional data successfully captures the major pattern
in the data.
• But how much of the information in a data set is lost by
projecting the observations onto the first few principal
components? Or, how much of the variance in the data is not
contained in the first few principal components?
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The Proportion of Variance Explained

• To answer this question, we want to know the proportion of
variance explained (PVE) by each principal component.
• The total variance present in a data set is (assuming that the
variables have been centered)

p∑
j=1

V ar(Xj) =
p∑
j=1

1
n

n∑
i=1

x2
ij . (3.2.5)

• The variance explained by the mth principal component is

1
n

n∑
i=1

z2
im = 1

n

n∑
i=1

 p∑
j=1

φjmxij

2

. (3.2.6)
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The Proportion of Variance Explained

• Therefore, the proportion of variance explained (PVE) by the
mth principal component is

∑n
i=1

(∑p
j=1 φjmxij

)2

∑p
j=1

∑n
i=1 x

2
ij

. (3.2.7)

• To compute the cumulative PVE of the first M principal
components, we can sum (3.2.7) over the first M PVEs.
• In the US Arrests data, the first principal component explains

62.0% of the variance in the data and the second principal
component explains 24.7% of the variance.
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The Proportion of Variance Explained

• Together, the first two principal components explain ≈ 87% of
the variance and the last two principal components explain
only ≈ 13% of the variance.

PVE (scree plot) and cumulative PVE10.2 Principal Components Analysis 383
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FIGURE 10.4. Left: a scree plot depicting the proportion of variance explained
by each of the four principal components in the USArrests data. Right: the cu-
mulative proportion of variance explained by the four principal components in the
USArrests data.

and the variance explained by the mth principal component is

1

n

n∑

i=1

z2
im =

1

n

n∑

i=1

⎛
⎝

p∑

j=1

φjmxij

⎞
⎠

2

. (10.7)

Therefore, the PVE of the mth principal component is given by

∑n
i=1

(∑p
j=1 φjmxij

)2

∑p
j=1

∑n
i=1 x2

ij

. (10.8)

The PVE of each principal component is a positive quantity. In order to
compute the cumulative PVE of the first M principal components, we
can simply sum (10.8) over each of the first M PVEs. In total, there are
min(n− 1, p) principal components, and their PVEs sum to one.

In the USArrests data, the first principal component explains 62.0% of
the variance in the data, and the next principal component explains 24.7%
of the variance. Together, the first two principal components explain almost
87% of the variance in the data, and the last two principal components
explain only 13% of the variance. This means that Figure 10.1 provides a
pretty accurate summary of the data using just two dimensions. The PVE
of each principal component, as well as the cumulative PVE, is shown
in Figure 10.4. The left-hand panel is known as a scree plot, and will be

scree plot
discussed next.

Deciding How Many Principal Components to Use

In general, a n × p data matrix X has min(n − 1, p) distinct principal
components. However, we usually are not interested in all of them; rather,

(Source: James et al. 2013, 383)
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How Many Principal Components Should
We Use?



How Many Principal Components Should We Use?

• A n× p data matrix X has min(n− 1, p) principal
components.
• Our goal is to use the smallest number of principal
components required to get a good understanding of the data.

• We typically decide on the number of principal components by
examining a scree plot (see above).
• We do so by eyeballing the scree plot and looking for an
“elbow” in the plot (a point at which the PVE drops off).
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