
RECSM Summer School:
Machine Learning for Social Sciences

Session 2.4:
Boosting

Reto Wüest

Department of Political Science and International Relations
University of Geneva

1



Boosting



Boosting

• Like bagging, boosting is a general approach that can be
applied to many machine learning methods for regression or
classification.
• Recall that bagging creates multiple bootstrap training sets
from the original training set, fits a separate tree to each
bootstrap training set, and then combines all trees to create a
single prediction.
• This means that each tree is built on a bootstrap sample,
independent of the other trees.

1



Boosting

• In boosting, the trees are grown sequentially: each tree is
grown using information from previously grown trees.
• Boosting does not involve bootstrap sampling. Instead, each
tree is fit on a modified version of the original data set.

2



Boosting

Algorithm



Boosting

Algorithm: Boosting for Regression Trees
1 Set f̂(x) = 0 and ri = yi for all i in the training set.

2 For b = 1, 2, . . . , B, repeat:
(a) Fit a tree f̂ b with d splits (d+ 1 terminal nodes) to the

training data (X, r).
(b) Update f̂ by adding in a shrunken version of the new tree

f̂(x)← f̂(x) + λf̂ b(x). (2.4.1)

(c) Update the residuals

ri ← ri − λf̂ b(xi). (2.4.2)

3 Output the boosted model

f̂(x) =
B∑

b=1
λf̂ b(x). (2.4.3)

3



Boosting

What Is the Idea Behind Boosting?



What Is the Idea Behind Boosting?

• Unlike fitting a single large decision tree, which potentially
overfits the data, boosting learns slowly.
• Given the current model, we fit a new decision tree to the
residuals from that model (rather than the outcome Y ).
• We then add the new decision tree into the fitted function in
order to update the residuals.

4



What Is the Idea Behind Boosting?

• Each of the trees can be rather small, with just a few terminal
nodes, determined by parameter d.
• Fitting small trees to the residuals means that we slowly
improve f̂ in areas where it does not perform well.
• The shrinkage parameter λ slows the process even further,
allowing more and different shaped trees to attack the
residuals.

5



Boosting

Tuning Parameters for Boosting



Tuning Parameters for Boosting

1 Number of trees B
• Boosting can overfit if B is too large.
• Use CV to select B.

2 Shrinkage parameter λ
• Controls the rate at which boosting learns.
• A small positive number, typical values are 0.01 or 0.001.
• Very small λ can require a very large value of B in order to

achieve good performance.

6



Tuning Parameters for Boosting

3 Number of splits in each tree d
• Controls the complexity of the boosted ensemble.
• It is the interaction depth, since d splits can involve at most d

variables.
• Often d = 1 works well, in which case each tree is a stump

(consisting of a single split).

7



Boosting – Gene Expression Example

Boosting and Random Forests Applied to Gene Expression Data324 8. Tree-Based Methods

0 1000 2000 3000 4000 5000

0.
05

0.
10

0.
15

0
.2

0
0.

25

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n 
E

rr
or

Boosting: depth=1
Boosting: depth=2
RandomForest: m= p

FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The
test error is displayed as a function of the number of trees. For the two boosted
models, λ = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both out-
perform the random forest, although the standard errors are around 0.02, making
none of these differences significant. The test error rate for a single tree is 24 %.

We first use classification trees to analyze the Carseats data set. In these
data, Sales is a continuous variable, and so we begin by recoding it as a
binary variable. We use the ifelse() function to create a variable, called

ifelse()
High, which takes on a value of Yes if the Sales variable exceeds 8, and
takes on a value of No otherwise.

> library (ISLR)

> attach (Carseats )

> High=ifelse (Sales <=8," No"," Yes ")

Finally, we use the data.frame() function to merge High with the rest of
the Carseats data.

> Carseats =data.frame(Carseats ,High)

We now use the tree() function to fit a classification tree in order to predict
tree()

High using all variables but Sales. The syntax of the tree() function is quite
similar to that of the lm() function.

> tree.carseats =tree(High∼.-Sales ,Carseats )

The summary() function lists the variables that are used as internal nodes
in the tree, the number of terminal nodes, and the (training) error rate.

> summary (tree.carseats )

Classification tree:

tree(formula = High ∼ . - Sales , data = Carseats )

Variables actually used in tree construction:

[1] "ShelveLoc " "Price" "Income " "CompPrice "

(Boosting with stumps, if enough of them are included, outperforms the depth-two model.
Both boosting models outperform a random forest. Source: James et al. 2013, 324)

For the two boosted models, λ = 0.01. Note that the test error rate for a
single tree is 24%. 8


	Boosting
	Algorithm
	What Is the Idea Behind Boosting?
	Tuning Parameters for Boosting


