RECSM Summer School:

Machine Learning for Social Sciences

Session 2.1:
Introduction to Classification and Regression Trees

Reto Wiiest

Department of Political Science and International Relations

University of Geneva

The Basics of Decision Trees

The Basics of Decision Trees

® Tree-based methods stratify or segment the predictor space
into a number of simple regions.

® To make a prediction for a test observation, we use the mean
or mode of the training observations in the region to which it
belongs.

® These methods are called decision-tree methods because the
splitting rules used to segment the predictor space can be
summarized in a tree.

® Decision trees can be applied to both regression and
classification problems.

The Basics of Decision Trees

Regression Trees

Regression Trees — Example

The goal is to predict a baseball player's (log) salary based on the
number of years played in the major leagues and the number of

hits in the previous year.

Regression Tree Fit to Baseball Salary Data

Years < 4.5
T

Rs

175

Hits

R

Rz

Hits <|117.5

5.11
24
Years

6.00 6.74

(Source: James et al. 2013, 304f.)

Terminology for Trees

® Regions Ry, R2, and R3 above are the terminal nodes or
leaves of the tree.

® Points along the tree where the predictor space is split are the
internal nodes (indicated above by the text Years < 4.5 and
Hits < 117.5).

® Segments of the tree that connect the nodes are called
branches.

Interpretation of Trees

® Experience is the most important
factor determining salary: players
with less experience earn lower
salaries than players with more
experience.

e Among less experienced players,
the number of hits matters little
for a player's salary.

® Among more experienced players,

those with a higher number of hits
tend to have higher salaries.

Regression Tree Fit to
Baseball Salary Data

Years < 4.5
T

5.11

6.00

Hits <|

117.5

6.74

Building a Regression Tree

Roughly speaking, there are two steps:

@ Divide the predictor space (i.e., the set of possible values for
predictors X1, Xo,..., X)) into J distinct and
non-overlapping regions, Ry, Ra,..., R;.

® Make the same prediction for every test observation that falls
into region R;: the prediction is the mean of the response
values of the training observations in R;.

Building a Regression Tree

Step 1 (more detailed):

® How do we construct the regions Ry,..., R;?

® \We divide the predictor space into high-dimensional rectangles
(boxes), regions {Rj}jzl, such that they minimize the RSS

J
Z Z(yi_gR]’)Qv (211)
Jj=lieR;

where Jp; is the mean response of the training observations in
the jth box.

Building a Regression Tree

Step 1 (more detailed):

® |t is computationally not feasible to consider every possible
partition of the predictor space into J boxes.

® Therefore, we take a top-down, greedy approach that is
known as recursive binary splitting:

® Top-down: we begin at the top of the tree (where all
observations belong to a single region) and successively split
the predictor space;

® Greedy: at each step of the tree-building process we make the
split that is best at that step (i.e., we do not look ahead and
pick a split that will lead to a better tree in some future step).

Building a Regression Tree

Step 1 (more detailed):

® How do we perform recursive binary splitting?

® We first select the predictor X; and the cutpoint s such that
splitting the predictor space into the regions {X | X; < s}
and {X | X; > s} leads to the greatest possible reduction in
RSS. (We now have two regions.)

® Next, we again select the predictor and the cutpoint that
minimize the RSS, but this time we split one of the two
previously identified regions. (We now have three regions.)

Building a Regression Tree

Step 1 (more detailed):

® Next, we split one of the three regions further, so as to
minimize the RSS. (We now have four regions.)

® \We continue this process until a stopping criterion is reached.

® Once the regions Ry,..., Ry have been created, we predict
the response for a test observation using the mean of the
training observations in the region to which the test

observation belongs.

Building a Regression Tree — Example

Decision Tree Predictor Space

10

The Basics of Decision Trees

Tree Pruning

Tree Pruning

® The above process may produce good predictions on the
training set, but it is likely to overfit the data, leading to poor

test set performance.

® The reason is that the resulting tree might be too complex. A
less complex tree (fewer splits) might lead to lower variance at
the cost of a little bias.

® A less complex tree can be achieved by tree pruning: grow a
very large tree Ty and then prune it back in order to obtain a
subtree.

11

Tree Pruning

® How do we find the best subtree?

® Qur goal is to select a subtree that leads to the lowest test
error rate.

® For each subtree, we could estimate its test error using
cross-validation (CV).

® However, this approach is not feasible as there is a very large
number of possible subtrees.

® Cost complexity pruning allows us to select only a small set of
subtrees for consideration.

12

Cost Complexity Pruning

® |let o > 0 be a tuning parameter. For each value of «, there
is a subtree T' C T that minimizes

7|

Yo > Wi—9r.)?+alTl, (2.1.2)

m=11: xleRm

where |T'| is the number of terminal nodes of subtree T'.

® The tuning parameter « controls the trade-off between the
subtree's complexity and its fit to the training data.

® The price we need to pay for having a tree with many terminal
nodes increases with a. Hence, (2.1.2) will be minimized for a

smaller subtree. (Note the similarity to the lasso!)

13

Cost Complexity Pruning

® \We can select the optimal value of a using CV (or, in a
data-rich situation, the validation set approach).

® Finally, we return to the full data set and obtain the subtree
corresponding to the optimal value of a.

14

Cost Complexity Pruning

Algorithm: Fitting and Pruning a Regression Tree

@ Use recursive binary splitting to grow a large tree Ty on the training
data.
@ Apply cost complexity pruning to T in order to obtain a sequence
of best subtrees, as a function of «.
© Use K-fold CV to choose the optimal a. That is, divide the training
observations into K folds. Foreach k=1,... K:
(a) Repeat Steps 1 and 2 on all but the kth fold of the training
data.
(b) Evaluate the prediction error on the data in the left-out kth
fold, as a function of «.
Average the results for each value of «, and choose « to minimize
the average error.
O Return the subtree from Step 2 that corresponds to the chosen
value of a.

Cost Complexity Pruning — Example

Fitting and Pruning a Regression Tree on the Baseball Salary Data

Unpruned Tree

Years <45

i

Pruned Tree (for optimal «)
Years < 4.5
Hits <[117.5
RBI 4 60.5 Hits <[117.5 511
Yoarle 35
6.00 6.74
5.487 5.394 6.189
w2 s
vsl i35 vatele 525
Runs 475 [RBI 4805
6015 5571 40 6549 proatei<ics B

(Source: James et al. 2013, 304 & 310) 16

Cost Complexity Pruning — Example

Fitting and Pruning a Regression Tree on the Baseball Salary Data

o
= = Training
== Cross-Validation
= Test
o
@
8
5 <
i} 2
L o
°
s e ————
3 § —t
c < —
§ © \ — ——
= — —_
o ——3 1
9 4
o
S 4
T T T T T
2 4 6 8 10
Tree Size

(Green curve shows the CV error associated with « and, therefore, the
number of terminal nodes; orange curve shows the test error; black curve
shows the training error curve. Source: James et al. 2013, 311)

The CV error is a reasonable approximation of the test error. The CV

error takes on its minimum for a three-node tree (see previous slide).
17

The Basics of Decision Trees

Classification Trees

Classification Trees

e (lassification trees are very similar to regression trees, except
that they are used to predict a qualitative rather than a
quantitative response.

® For a regression tree, the predicted response for an

observation is given by the mean response of the training
observations that belong to the same terminal node.

® For a classification tree, the predicted response for an
observation is the most commonly occurring class among the
training observations that belong to the same terminal node.

18

Building a Classification Tree

® Just as in the regression setting, we use recursive binary
splitting to grow a classification tree.

® However, in the classification setting, RSS cannot be used as
a criterion for making binary splits. Alternatively, we could use
the classification error rate.

® We would assign each observation in terminal node m to the
most commonly occurring class, so the classification error rate
is the fraction of training observations in that terminal node
that do not belong to the most common class

E =1 — argmax(pmk), (2.1.3)
k

where P, represents the proportion of training observations
in the mth terminal node that are from the kth class.

19

Building a Classification Tree

® However, it turns out that classification error is not sufficiently

sensitive for tree-growing.

® Therefore, two other measures are preferable: the Gini index

and entropy.

® The Gini index is a measure of total variance across the K

classes:
K
G= Zﬁmk(l - ﬁmk) (214)
k=1

It takes on a small value if all of the p,,,1's are close to 0 or 1.
Therefore, a small value indicates that a node contains

predominantly observations from a single class (node purity).

20

Building a Classification Tree

® An alternative to the Gini index is the entropy, given by

K

D=— Zﬁmk log prnk- (215)
k=1

(Note that since 0 < Py < 1, it is 0 < =Py log Prnk-)

® The entropy will take on a value near 0 if the p,,'s are all
near 0 or 1. Therefore, like the Gini index, the entropy will
take on a small value if the mth node is pure.

21

Building a Classification Tree

¢ Building a classification tree: either the Gini index or the
entropy is used to evaluate the quality of a particular split,
since these measures are more sensitive than the classification

error rate.

® Pruning the tree: any of the three measures might be used,
but the classification error rate is preferable if prediction

accuracy of the final tree is the goal.

22

Building a Classification Tree — Example

Fitting and Pruning a Classification Tree on Heart Disease Data

Data for 303 patients with chest pain. Output variables takes a value of Yes if
a patient has a heart disease and a value of No if the patient has no heart

disease. There are 13 input variables.
Th@l:a

Ca 0.5
Oldpedk < 1.1
MaxHR|< 161.5 Chestf RestECG < 1
Yes
Yes Yes
No Chol k 244
No No

(Source: James et al. 2013, 313) 23

Building a Classification Tree — Example

Fitting and Pruning a Classification Tree on the Heart Disease Data

Thal:a
g 7 = Training !
= Cross-Validation
= Test
0
9
<
3 A
S o |
5 o
R:£77:>i:)(::i/ cat05 Ca{05
o N P~
o N A
KR R
= E\E'E;E\E’E\E MaxHR(< 161.5 Chestiain:bc Yes Yes
g . No No
T T T No Yes
5 10 15
Tree Size

(Source: James et al. 2013, 313)
24

Building a Classification Tree — Example

® Note that in the above example, some of the splits yielded
two terminal nodes that have the same predicted value.

® Why are these splits performed at all?

® Such splits lead to increased node purity (they do not reduce
the classification error, but they improve the Gini index and
the entropy, which are more sensitive to node purity).

® Node purity is important because it tells us something about

how certain we are when making a prediction.

243

	The Basics of Decision Trees
	Regression Trees
	Tree Pruning
	Classification Trees

