
RECSM Summer School:
Machine Learning for Social Sciences

Session 2.1:
Introduction to Classification and Regression Trees

Reto Wüest

Department of Political Science and International Relations
University of Geneva

1

The Basics of Decision Trees

The Basics of Decision Trees

• Tree-based methods stratify or segment the predictor space
into a number of simple regions.
• To make a prediction for a test observation, we use the mean
or mode of the training observations in the region to which it
belongs.
• These methods are called decision-tree methods because the
splitting rules used to segment the predictor space can be
summarized in a tree.
• Decision trees can be applied to both regression and
classification problems.

1

The Basics of Decision Trees

Regression Trees

Regression Trees – Example

The goal is to predict a baseball player’s (log) salary based on the
number of years played in the major leagues and the number of
hits in the previous year.

Regression Tree Fit to Baseball Salary Data304 8. Tree-Based Methods

|Years < 4.5

Hits < 117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.
regression
tree

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary

is measured in thousands of dollars.)
Figure 8.1 shows a regression tree fit to this data. It consists of a series

of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.

8.1 The Basics of Decision Trees 305

Years

H
its

1

117.5

238

1 4.5 24

R1

R3

R2

FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of e5.107 thousands of dollars, i.e. $165,174, for
these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as R1 ={X | Years<4.5}, R2 ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates
the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000×e5.107 =$165,174, $1,000×e5.999 =$402,834, and
$1,000×e6.740 =$845,346 respectively.

In keeping with the tree analogy, the regions R1, R2, and R3 are known
as terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision

terminal
node

leaf

trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal

internal node
nodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the
segments of the trees that connect the nodes as branches.

branch
We might interpret the regression tree displayed in Figure 8.1 as follows:

Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who

(Source: James et al. 2013, 304f.)
2

Terminology for Trees

• Regions R1, R2, and R3 above are the terminal nodes or
leaves of the tree.
• Points along the tree where the predictor space is split are the
internal nodes (indicated above by the text Years < 4.5 and
Hits < 117.5).
• Segments of the tree that connect the nodes are called
branches.

3

Interpretation of Trees

• Experience is the most important
factor determining salary: players
with less experience earn lower
salaries than players with more
experience.
• Among less experienced players,
the number of hits matters little
for a player’s salary.
• Among more experienced players,
those with a higher number of hits
tend to have higher salaries.

Regression Tree Fit to
Baseball Salary Data304 8. Tree-Based Methods

|Years < 4.5

Hits < 117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.
regression
tree

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary

is measured in thousands of dollars.)
Figure 8.1 shows a regression tree fit to this data. It consists of a series

of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.

4

Building a Regression Tree

Roughly speaking, there are two steps:

1 Divide the predictor space (i.e., the set of possible values for
predictors X1, X2, . . . , Xp) into J distinct and
non-overlapping regions, R1, R2, . . . , RJ .

2 Make the same prediction for every test observation that falls
into region Rj : the prediction is the mean of the response
values of the training observations in Rj .

5

Building a Regression Tree

Step 1 (more detailed):

• How do we construct the regions R1, . . . , RJ?
• We divide the predictor space into high-dimensional rectangles
(boxes), regions {Rj}Jj=1, such that they minimize the RSS

J∑
j=1

∑
i∈Rj

(yi − ŷRj)2, (2.1.1)

where ŷRj is the mean response of the training observations in
the jth box.

6

Building a Regression Tree

Step 1 (more detailed):

• It is computationally not feasible to consider every possible
partition of the predictor space into J boxes.
• Therefore, we take a top-down, greedy approach that is
known as recursive binary splitting:
• Top-down: we begin at the top of the tree (where all

observations belong to a single region) and successively split
the predictor space;

• Greedy: at each step of the tree-building process we make the
split that is best at that step (i.e., we do not look ahead and
pick a split that will lead to a better tree in some future step).

7

Building a Regression Tree

Step 1 (more detailed):

• How do we perform recursive binary splitting?
• We first select the predictor Xj and the cutpoint s such that

splitting the predictor space into the regions {X | Xj < s}
and {X | Xj ≥ s} leads to the greatest possible reduction in
RSS. (We now have two regions.)
• Next, we again select the predictor and the cutpoint that
minimize the RSS, but this time we split one of the two
previously identified regions. (We now have three regions.)

8

Building a Regression Tree

Step 1 (more detailed):

• Next, we split one of the three regions further, so as to
minimize the RSS. (We now have four regions.)
• We continue this process until a stopping criterion is reached.
• Once the regions R1, . . . , RJ have been created, we predict

the response for a test observation using the mean of the
training observations in the region to which the test
observation belongs.

9

Building a Regression Tree – Example

Decision Tree

308 8. Tree-Based Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X

Y

2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

Therefore, a better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us
cost
complexity
pruning

weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.

Predictor Space308 8. Tree-Based Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X

Y

2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

Therefore, a better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us
cost
complexity
pruning

weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.

Prediction Surface

308 8. Tree-Based Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X

Y

2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

Therefore, a better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us
cost
complexity
pruning

weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.

(Source: James et al. 2013, 308)
10

The Basics of Decision Trees

Tree Pruning

Tree Pruning

• The above process may produce good predictions on the
training set, but it is likely to overfit the data, leading to poor
test set performance.
• The reason is that the resulting tree might be too complex. A
less complex tree (fewer splits) might lead to lower variance at
the cost of a little bias.
• A less complex tree can be achieved by tree pruning: grow a
very large tree T0 and then prune it back in order to obtain a
subtree.

11

Tree Pruning

• How do we find the best subtree?
• Our goal is to select a subtree that leads to the lowest test
error rate.
• For each subtree, we could estimate its test error using
cross-validation (CV).
• However, this approach is not feasible as there is a very large
number of possible subtrees.
• Cost complexity pruning allows us to select only a small set of
subtrees for consideration.

12

Cost Complexity Pruning

• Let α ≥ 0 be a tuning parameter. For each value of α, there
is a subtree T ⊂ T0 that minimizes

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T |, (2.1.2)

where |T | is the number of terminal nodes of subtree T .
• The tuning parameter α controls the trade-off between the

subtree’s complexity and its fit to the training data.
• The price we need to pay for having a tree with many terminal
nodes increases with α. Hence, (2.1.2) will be minimized for a
smaller subtree. (Note the similarity to the lasso!)

13

Cost Complexity Pruning

• We can select the optimal value of α using CV (or, in a
data-rich situation, the validation set approach).
• Finally, we return to the full data set and obtain the subtree
corresponding to the optimal value of α.

14

Cost Complexity Pruning

Algorithm: Fitting and Pruning a Regression Tree
1 Use recursive binary splitting to grow a large tree T0 on the training

data.
2 Apply cost complexity pruning to T0 in order to obtain a sequence

of best subtrees, as a function of α.
3 Use K-fold CV to choose the optimal α. That is, divide the training

observations into K folds. For each k = 1, . . . ,K:
(a) Repeat Steps 1 and 2 on all but the kth fold of the training

data.
(b) Evaluate the prediction error on the data in the left-out kth

fold, as a function of α.
Average the results for each value of α, and choose α to minimize
the average error.

4 Return the subtree from Step 2 that corresponds to the chosen
value of α. 15

Cost Complexity Pruning – Example

Fitting and Pruning a Regression Tree on the Baseball Salary Data

Unpruned Tree310 8. Tree-Based Methods

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5
Runs < 47.5

Walks < 52.5

RBI < 80.5
Years < 6.5

5.487

6.407 6.549

4.622 5.183
5.394 6.189

6.015 5.571

6.459 7.007
7.289

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as
a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.

Pruned Tree (for optimal α)304 8. Tree-Based Methods

|Years < 4.5

Hits < 117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.
regression
tree

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary

is measured in thousands of dollars.)
Figure 8.1 shows a regression tree fit to this data. It consists of a series

of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.

(Source: James et al. 2013, 304 & 310) 16

Cost Complexity Pruning – Example

Fitting and Pruning a Regression Tree on the Baseball Salary Data8.1 The Basics of Decision Trees 311

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tree Size

M
ea

n
S

qu
ar

ed
 E

rr
or

Training
Cross−Validation
Test

FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

minimum for a three-node tree, while the test error also dips down at the
three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees

A classification tree is very similar to a regression tree, except that it is
classification
treeused to predict a qualitative response rather than a quantitative one. Re-

call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the
same terminal node. In contrast, for a classification tree, we predict that
each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.

The task of growing a classification tree is quite similar to the task of
growing a regression tree. Just as in the regression setting, we use recursive
binary splitting to grow a classification tree. However, in the classification
setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan

classification
error rateto assign an observation in a given region to the most commonly occurring

class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not
belong to the most common class:

(Green curve shows the CV error associated with α and, therefore, the
number of terminal nodes; orange curve shows the test error; black curve
shows the training error curve. Source: James et al. 2013, 311)

The CV error is a reasonable approximation of the test error. The CV
error takes on its minimum for a three-node tree (see previous slide).

17

The Basics of Decision Trees

Classification Trees

Classification Trees

• Classification trees are very similar to regression trees, except
that they are used to predict a qualitative rather than a
quantitative response.
• For a regression tree, the predicted response for an
observation is given by the mean response of the training
observations that belong to the same terminal node.
• For a classification tree, the predicted response for an
observation is the most commonly occurring class among the
training observations that belong to the same terminal node.

18

Building a Classification Tree

• Just as in the regression setting, we use recursive binary
splitting to grow a classification tree.
• However, in the classification setting, RSS cannot be used as
a criterion for making binary splits. Alternatively, we could use
the classification error rate.
• We would assign each observation in terminal node m to the
most commonly occurring class, so the classification error rate
is the fraction of training observations in that terminal node
that do not belong to the most common class

E = 1− arg max
k

(p̂mk), (2.1.3)

where p̂mk represents the proportion of training observations
in the mth terminal node that are from the kth class.

19

Building a Classification Tree

• However, it turns out that classification error is not sufficiently
sensitive for tree-growing.
• Therefore, two other measures are preferable: the Gini index
and entropy.
• The Gini index is a measure of total variance across the K

classes:

G =
K∑
k=1

p̂mk(1− p̂mk). (2.1.4)

It takes on a small value if all of the p̂mk’s are close to 0 or 1.
Therefore, a small value indicates that a node contains
predominantly observations from a single class (node purity).

20

Building a Classification Tree

• An alternative to the Gini index is the entropy, given by

D = −
K∑
k=1

p̂mk log p̂mk. (2.1.5)

(Note that since 0 ≤ p̂mk ≤ 1, it is 0 ≤ −p̂mk log p̂mk.)
• The entropy will take on a value near 0 if the p̂mk’s are all

near 0 or 1. Therefore, like the Gini index, the entropy will
take on a small value if the mth node is pure.

21

Building a Classification Tree

• Building a classification tree: either the Gini index or the
entropy is used to evaluate the quality of a particular split,
since these measures are more sensitive than the classification
error rate.
• Pruning the tree: any of the three measures might be used,
but the classification error rate is preferable if prediction
accuracy of the final tree is the goal.

22

Building a Classification Tree – Example

Fitting and Pruning a Classification Tree on Heart Disease Data
Data for 303 patients with chest pain. Output variables takes a value of Yes if
a patient has a heart disease and a value of No if the patient has no heart
disease. There are 13 input variables.

8.1 The Basics of Decision Trees 313

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157
Chol < 244

MaxHR < 156
MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No
No

Yes
No

No Yes
No No No Yes

No

No Yes

Yes No Yes Yes
Yes

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Tree Size

E
rr

or

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned tree.
Bottom Right: The pruned tree corresponding to the minimal cross-validation
error.

assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.

(Source: James et al. 2013, 313) 23

Building a Classification Tree – Example

Fitting and Pruning a Classification Tree on the Heart Disease Data

8.1 The Basics of Decision Trees 313

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157
Chol < 244

MaxHR < 156
MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No
No

Yes
No

No Yes
No No No Yes

No

No Yes

Yes No Yes Yes
Yes

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Tree Size

E
rr

or

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned tree.
Bottom Right: The pruned tree corresponding to the minimal cross-validation
error.

assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.

(Source: James et al. 2013, 313)

24

Building a Classification Tree – Example

• Note that in the above example, some of the splits yielded
two terminal nodes that have the same predicted value.
• Why are these splits performed at all?
• Such splits lead to increased node purity (they do not reduce
the classification error, but they improve the Gini index and
the entropy, which are more sensitive to node purity).
• Node purity is important because it tells us something about
how certain we are when making a prediction.

25

	The Basics of Decision Trees
	Regression Trees
	Tree Pruning
	Classification Trees

