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Statistical Decision Theory

® et X € RP be a vector of input variables and Y € R an
output variable, with joint distribution Pr(X,Y).

® Qur goal is to find a function f(X) for predicting Y given
values of X.

® We need a loss function L(Y, f(X)) that penalizes errors in
prediction.

® The most common loss function is squared error loss

L(Y, f(X)) = (¥ — f(X))2. (13.1)



Statistical Decision Theory

The expected prediction error or expected test error is
expected test error = E(Y — f(X))2. (1.3.2)

® We choose f so as to minimize the expected test error.

® The solution is the conditional expectation
flz)=EY | X =x). (1.3.3)

® Hence, the best prediction of Y at point X = x is the
conditional expectation.

® |et's look at two simple methods that differ in how they
approximate the conditional expectation.
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Linear Model and Least Squares

® |n linear regression, we specify a model to estimate the

conditional expectation in (1.3.3)
f(x) =278 (1.3.4)

® Using the method of least squares, we choose (3 to minimize

the residual sum of squares

N

RSS(B) =) (yi — i ). (1.3.5)

i=1



Linear Model and Least Squares — Example

® Goal is to predict outcome variable G € {blue, } on the
basis of training data on inputs X; € R and X5 € R.

e We fit a linear regression to the training data, with Y coded
as 0 for blue and 1 for

e Fitted values Y are converted to a fitted variable G as follows

. if Y > 0.5,
G = . (1.3.6)
blue if Y <0.5.
® |n the figure below, the set of points classified as is

{x € R?: 273 > 0.5} and the set of points classified as blue
is {z € R? : 273 < 0.5}. The linear decision boundary
separating the two predicted classes is {z € R2 : 273 = 0.5}.



Linear Model and Least Squares — Example

® Several training observations are misclassified on both sides of
the decision boundary.

Linear Regression

L

(Source: Hastie et al. 2009, 13)
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K-Nearest Neighbors

® K-nearest neighbors (KNN) directly estimates the conditional
expectation in (1.3.3) using the training data.

® However, instead of conditioning on x, KNN uses the K
observations in the training set that are closest in input space
to x to form an estimate of the conditional expectation:

f@) = vae%;((m) Yis (1.3.7)

where NV () is the neighborhood of z defined by the K
closest training observations z; (in terms of Euclidean
distance).



K-Nearest Neighbors — Example

® \When KNN is applied to the above training data, Y is the
proportion of outcomes in the neighborhood N ().

e Creating G according to rule (1.3.6) amounts to a majority
vote in the neighborhood.

® |n the figures below, the decision boundaries are more irregular

than the decision boundary resulting from linear regression.



K-Nearest Neighbors — Example

® Fewer (left) / none (right) training observations are
misclassified than in the classification by linear regression.

KNN with K = 15 KNN with K =1
3%
@o @
"2

: @w

(Source: Hastie et al. 2009, 15f.)
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Linear Regression vs. K-Nearest Neighbors

® Linear model assumes that f(z) is well approximated by a
globally linear function: its predictions are stable but possibly
inaccurate (low variance and high bias).

® KNN assumes that f(x) is well approximated by a locally
constant function: its predictions are often accurate but can
be unstable (low bias and high variance).



Linear Regression vs. K-Nearest Neighbors

® Should we choose the stable but biased linear model or the
less biased but less stable KNN method?

® Perhaps, with a large set of training data, we can always
approximate the theoretically optimal conditional expectation
by KNN?

® No! If the input space is high-dimensional, then the nearest
training observations need not be close to the target point
(curse of dimensionality).

o KNN may be inappropriate even in low dimensions if more
structured approaches can make more efficient use of the data.
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Assessing Model Accuracy

® Qur goal is to find a learning method f(X) to predict output
Y on the basis of a set of inputs X.

® There are many methods available, so the question becomes
how we should select f(X).

® |s there perhaps a “universal” method that performs well on
all learning tasks?
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Assessing Model Accuracy

No-Free-Lunch Theorem

There is no universal learning method that performs best on all
learning tasks.

12



Assessing Model Accuracy

® \When choosing among learning methods for a given data set,

we are interested in the methods’ generalization performance.

® The generalization performance of a learning method relates
to its prediction accuracy on independent test data.

® Assessment of generalization performance is very important,

since it guides our choice of method for a learning task.

13
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Model Accuracy in Regression Problems

® The most common performance measure is the mean squared
error (MSE) N

MSE = %Z (yz’—f(-’ﬂi))Q, (1.3.8)

i=1
where f(xz) is the prediction that f produces for the ith
observation.

® The MSE in (1.3.8) is computed using the training data, so it
is the training MSE.

® However, what we care about is how well the method
performs on new (i.e., previously unseen) test data x.

® \We therefore select the method that minimizes the expected

test MSE R )
expected test MSE = E (yo - f(:vo)) . (139

14



Model Accuracy in Regression Problems

® \What happens if we select the method that minimizes the
training MSE in (1.3.8)?

® Danger of overfitting data: a model that is less flexible than
the one we selected would have yielded a smaller test MSE.
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(Left: data simulated from true f in black; orange, blue, and green curves are three estimates for f with
increasing levels of flexibility. Right: training MSE in gray; test MSE in red. Source: James et al. 2013, 31)
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Bias-Variance Trade-Off

® The U-shape in the test MSE curve is the result of two
competing properties of learning methods.

® Suppose Y = f(X) + ¢, where E(¢) =0 and Var(e) = o

e The expected test MSE of f(X) at X = z( can be
decomposed into the sum of three quantities

expected test MSE = B [(Y — f(0))* ] X =m| (13.10)
- [ (F@0)) - f(ao)]’

+ B [f(w0) - E (f(a0))] +o?
— Bias® ( f(z0) ) + Var (f(mo)) + o2,

where o2 is the variance of the target around its true mean
f(zo) (irreducible error).
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Bias-Variance Trade-Off

® To minimize the expected test MSE, we need to select a
method that simultaneously achieves low bias and low

variance.

® Bias: The error that we introduce by approximating the true
f by the estimate f

® Variance: Different training data sets result in a different f
The variance refers to the amount by which f would change if
we estimated it using a different training data set.

17



Bias-Variance Trade-Off

® More flexible methods have higher variance, while less flexible
methods have higher bias. This is the bias-variance trade-off.

25

= MSE
=== Bias
Var

Flexibility

(Source: James et al. 2013, 36)
® |n practice f is unobserved, making it impossible to explicitly
compute the bias, variance, and test MSE for a method.
® \We need to estimate the expected test MSE based on the
available data (e.g., using cross-validation). 18
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Cross-Validation

® Cross-validation (CV) is a re-sampling method that can be
used to estimate the expected test error of a learning method.

® Randomly split the N training observations into 2 < K < N
non-overlapping groups (folds) of approximately equal size.

® Use the first fold as the validation data set and the remaining
folds as the training data set.

® Fit the model on the training observations.

® Use the fitted model to make predictions for the held out
observations and compute the MSE.

19



Cross-Validation

® Repeat the procedure, each time using another fold as the
validation data set. This gives K estimates of the test error,
MSE;, MSE,, ..., MSEk.

[123 n
!

11765 47

11765 47

11765 47

11765 47

11765 47

(Source: James et al. 2013, 181)
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Cross-Validation

® The CV estimate for the test MSE is given by the average
1 K
CVigy=—= MSE. 1.3.11
() }(2; k (1.3.11)

e |f K < N, then this procedure is called K-fold

cross-validation.

e |[f K = N, then we call it leave-one-out cross-validation

(LOOCV).

® Choice of K is associated with a bias-variance trade-off:
LOOCV has lower bias than K-fold CV, but K-fold CV has
lower variance than LOOCV.

21



Validation Set Approach

® |n a data-rich situation, we can use the validation set
approach to estimate the test error.

® Randomly split the NV available observations into two groups,
a training set and a validation set.

® Fit the model on the observations in the training set.

® Use the fitted model to predict the outcomes for the
observations in the validation set and compute the MSE.

|123 n|

!

7 22 13 91
(Source: James et al. 2013, 181)
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Model Accuracy in Classification Problems

® Suppose that we estimate f on the basis of training data
{(x4,yi) }i=1,...,n, where y1,...,yn are qualitative.

® The most common approach for measuring the accuracy of f
is the misclassification error

N
1
isclassificati == E 1(y: # Ui 1.3.12
misclassification error = - 2 (i #9i), ( )

where 7; is the predicted class label for i using f and
1(y; # y;) is an indicator variable that equals 1 if y; # y;
(misclassification) and 0 if y; = ¢; (correct classification).
® The misclassification error in (1.3.12) is the training error
because it is computed based on the training data.

23



Model Accuracy in Classification Problems

® Again, however, we are more interested in selecting a method
that minimizes the expected test error on new data (zg, yo)

expected test error = E' (1(yo # 90)).  (1.3.13)

® The expected test error is minimized by the Bayes classifier,
which assigns each observation to the most likely class given
its predictor values, i.e., argmax;c 7 Pr(Y = j [ X = z).

® The Bayes classifier produces the lowest possible expected test
error (called the Bayes error rate).

® The Bayes error rate is analogous to the irreducible error in
the regression setting.

24



Model Accuracy in Classification Problems

Bayes Classifier on Simulated Data

oF
X,

(For each X = =, there is a probability that Y is or blue. Because the data-generating process is known,

the conditional probability of each class can be calculated for each . The region is the set of = for which

Pr(Y = | X = x) > 0.5 and the blue region is the set for which Pr(Y = | X =) <0.5.

The dashed line is the Bayes decision boundary. Source: James et al. 2013, 38.)
243



Model Accuracy in Classification Problems

® For real data, we do not know Pr(Y =j | X = x), so we
cannot compute the Bayes classifier.

® We need to estimate Pr(Y | X) and then classify a given
observation to the class with the highest estimated probability.

® One method to do so is KNN. Given K € Z~( and test
observation zg, KNN identifies the K observations in the
training data closest to zq, indicated by NK(.I'O), and
estimates the conditional probability for each class j as the
fraction of observations in Nk (xo) whose output equals j

Py =j|X=s)=% Y Iu=j) (1314)
z; €Nk (20)

It then assigns z( to the class j with the highest probability.

26
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Bias-Variance Trade-Off Revisited

KNN Applied to Simulated Data
K=1 K =100

(KNN decision boundaries are shown as black solid lines; Bayes decision boundary is shown as a dashed line.
Source: James et al. 2013, 41)
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Bias-Variance Trade-Off Revisited

As 1/K increases, KNN becomes more flexible. As flexibility
increases, the training error consistently declines and the test error

exhibits the characteristic U-shape.
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indicated by a dashed line. Source: James et al. 2013, 42)
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Cross-Validation Revisited

® As for regression problems, the level of flexibility is critical to
the performance of a classification method.

® \We can again use cross-validation to choose the optimal level
of flexibility.

® However, instead of using MSE to quantify test error, we now
use the number of misclassified observations.

® In the classification setting, the CV estimate for the expected
test error is

1 K
Vi) = 7= > B, (1.3.15)
k=1

where Errj, = Nik E;N:’“l 1(y; # yi) and Ny is the number of

observations in the kth validation set.
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