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The Lasso
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The Lasso

• A disadvantage of ridge regression is that it will always include
all p predictors in the model.

• The ridge regression penalty λ
∑p
j=1 β

2
j shrinks all coefficients

towards 0, but it does not set any of them exactly to 0.
• The lasso overcomes this disadvantage by replacing the β2

j

term in the ridge regression penalty by |βj |.
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The Lasso

• Therefore, the lasso coefficient estimates are the values that
minimize

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ
p∑
j=1
|βj | = RSS + λ

p∑
j=1
|βj |. (1.5.1)

• As with ridge regression, the lasso shrinks the estimates
towards 0.

• However, when λ is sufficiently large, the lasso forces some
estimates to be exactly equal to 0 (the lasso thus performs
variable selection).
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The Lasso

• As in ridge regression, the tuning parameter λ plays a critical
role:

• If λ = 0, then the lasso estimates are identical to the least
squares estimates.

• When λ becomes sufficiently large, the lasso estimates are set
exactly equal to 0.

• Depending on the value of λ, the lasso can produce a model
involving any number of variables.

• In contrast, ridge regression will always include all of the
variables in the model.
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Comparing the Lasso and Ridge
Regression
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Comparing the Lasso and Ridge Regression

• The lasso coefficient estimates solve the problem

arg min
β


n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2
 s.t.

p∑
j=1
|βj | ≤ s. (1.5.2)

• The ridge regression coefficient estimates solve the problem

arg min
β


n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2
 s.t.

p∑
j=1

β2
j ≤ s. (1.5.3)
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Comparing the Lasso and Ridge Regression

• If p = 2, lasso tries to find the set of coefficient estimates that
lead to the smallest RSS, subject to the budget constraint
|β1|+ |β2| ≤ s.

• If p = 2, ridge regression tries to find the set of coefficient
estimates that lead to the smallest RSS, subject to the budget
constraint β2

1 + β2
2 ≤ s.
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Comparing the Lasso and Ridge Regression

Lasso
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1| + |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

circle represent the lasso and ridge regression constraints in (6.8) and (6.9),
respectively. If s is sufficiently large, then the constraint regions will con-
tain β̂, and so the ridge regression and lasso estimates will be the same as
the least squares estimates. (Such a large value of s corresponds to λ = 0
in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie
outside of the diamond and the circle, and so the least squares estimates
are not the same as the lasso and ridge regression estimates.

The ellipses that are centered around β̂ represent regions of constant
RSS. In other words, all of the points on a given ellipse share a common
value of the RSS. As the ellipses expand away from the least squares co-
efficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate
that the lasso and ridge regression coefficient estimates are given by the
first point at which an ellipse contacts the constraint region. Since ridge
regression has a circular constraint with no sharp points, this intersection
will not generally occur on an axis, and so the ridge regression coefficient
estimates will be exclusively non-zero. However, the lasso constraint has
corners at each of the axes, and so the ellipse will often intersect the con-
straint region at an axis. When this occurs, one of the coefficients will equal
zero. In higher dimensions, many of the coefficient estimates may equal zero
simultaneously. In Figure 6.7, the intersection occurs at β1 = 0, and so the
resulting model will only include β2.

In Figure 6.7, we considered the simple case of p = 2. When p = 3,
then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the

Ridge Regression
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1| + |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

circle represent the lasso and ridge regression constraints in (6.8) and (6.9),
respectively. If s is sufficiently large, then the constraint regions will con-
tain β̂, and so the ridge regression and lasso estimates will be the same as
the least squares estimates. (Such a large value of s corresponds to λ = 0
in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie
outside of the diamond and the circle, and so the least squares estimates
are not the same as the lasso and ridge regression estimates.

The ellipses that are centered around β̂ represent regions of constant
RSS. In other words, all of the points on a given ellipse share a common
value of the RSS. As the ellipses expand away from the least squares co-
efficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate
that the lasso and ridge regression coefficient estimates are given by the
first point at which an ellipse contacts the constraint region. Since ridge
regression has a circular constraint with no sharp points, this intersection
will not generally occur on an axis, and so the ridge regression coefficient
estimates will be exclusively non-zero. However, the lasso constraint has
corners at each of the axes, and so the ellipse will often intersect the con-
straint region at an axis. When this occurs, one of the coefficients will equal
zero. In higher dimensions, many of the coefficient estimates may equal zero
simultaneously. In Figure 6.7, the intersection occurs at β1 = 0, and so the
resulting model will only include β2.

In Figure 6.7, we considered the simple case of p = 2. When p = 3,
then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the

(Source: James et al. 2013, 222)

• β̂ is the least squares solution.
• The diamond and the circle are the lasso and ridge regression
constraints, respectively.

• The ellipses are the set of estimates with a constant RSS.
Those farther away from the least squares coefficient
estimates have a larger RSS.
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Comparing the Lasso and Ridge Regression

• The lasso has the advantage of producing simpler, and
therefore more interpretable, models than ridge regression.

• However, which method leads to better prediction accuracy?
• Neither the lasso nor ridge regression will universally dominate
the other.

• The lasso tends to perform better when only a relatively small
number of predictors have substantial coefficients.

• Ridge regression tends to perform better when there are many
predictors, all with coefficients of roughly equal size.
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Selection of the Tuning Parameter
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Selection of the Tuning Parameter

• Ridge regression and the lasso require us to select a value for
the tuning parameter λ.

• How do we choose the optimal λ?
• Cross-validation provides a way to tackle this problem:

• Choose a grid of λ values and compute the CV error for each
value.

• Select the tuning parameter value for which the CV error is
smallest.

• Re-fit the model using all available observations and the
selected λ value.
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